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Abstract

Let S be a y;-set of G. A subset 7' < S is said to be a forcing subset for S if S is the
unique x4 -set containing 7. The forcing star chromatic number f, (S) of S in G is the
minimum cardinality of a forcing subset for S. The forcing star chromatic number f)CS (G) of Gis

the smallest forcing number of all y,-sets of G. Some general properties satisfied by this

concept are studied. The forcing star chromatic number of some standard graphs are

determined. Connected graphs of order n > 2 with star chromatic number 0 or 1 or y4(G) are

characterized.

1. Introduction

By a graph G = (V, E), we mean a finite, undirected connected graph

without loops or multiple edges. The order and size of G are denoted by n and
m respectively. For basic graph theoretic terminology, we refer to [1]. Two

vertices u and v are said to be adjacent if wv is an edge of G. If uv € E(G),

2020 Mathematics Subject Classification: 05C15.
Keywords: Forcing star chromatic number, Star chromatic number, Chromatic number.

Received July 8, 2021; Accepted October 11, 2021



1230 R. SUGANYA and V. SUJIN FLOWER

we say that u is a neighbor of v and denote by N(v), the set of neighbors of v.
The degree of a vertex v e V is deg(v) =| N(v)|. A vertex v is said to be a
universal vertex if deg(v) = n —1. The distance d(u, v) between two vertices

u and v in a connected graph G is the length of a shortest © — v path in G. An

u — v path of length d(u, v) is called a u — v geodesic. A vertex x is said to lie

on a u —v geodesic P if x is a vertex of P including the vertices u and v. The

eccentricity e(v) of a vertex v in G is the maximum distance from v and a
vertex of G. e(v) = max{d(v, ) : u € V(G)}. The minimum eccentricity among
the vertices of G is the radius, radG or r(G) and the maximum eccentricity
is its diameter, diamG. We denote rad(G) by r and diamG by d. The

diameter of a graph is the maximum distance between a pair of vertices of G.

A double star is a tree with diameter 3. It is denoted by Kj , . The
vertex set of Ky , ¢ where wv is the internal edge of Ky , ;. Therefore
Ky . s = K1, UK s U{uv}, where the centre vertex of K; ¢ is u and the
centre vertex of K; ; is v. Let G = (V, E) be a connected graph. We define

the distance as the minimum length of path connecting vertices u and v in G,
denoted by d(u, v). A k-coloring of G is a function c: V(G) - {1, 2, ...k},
where c(u) # c¢(v) for any two adjacent vertices u and v in G. Thus, the
coloring ¢ induces a partition @ of V(G) into k color classes (independent
sets) Cp, Cy, ..., C,, where C; is the set of all vertices colored by the color i
for 1 <i < k. A p-vertex coloring of is an assignment of p colors, 1, 2, ..., p to
the vertices of G, the coloring is proper if no two distinct adjacent vertices
have the same color. If x(G) = p, G is said to be p-chromatic, where p < k. A
set C < V(G) is called chromatic set if C contains all vertices of distinct

colors in G. The chromatic number of G is the minimum cardinality among all
the chromatic sets of G. That is (G) = min {| C; |/C; is a chromatic set of
G}. The concept of the chromatic number was studied in [1, 2, 7-9]. A star

colouring of a graph G is proper colouring such that no path of length 4 is
bicolourable. The minimum colours needed for a star coloring of G is called

star chromatic number and is denoted by y%4(G). Let G be a star colourable. A

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022



THE FORCING STAR CHROMATIC NUMBER ... 1231

set S < V(G) is called a star chromatic set if S contains all vertices of
distinct colours in G. Any star chromatic set of order y,(G) is called a y-set

of G. The concept of the star chromatic number was studied in [5, 6]. The
chromatic number has application in Time Table Scheduling, Map coloring,
channel assignment problem in radio technology, town planning, GSM mobile
phone networks etc. [4, 7].

2. The Forcing Star Chromatic Number of a Graph

Theorem 2.1. Let S be a y-set of G. A subset T' = S is said to be a
forcing subset for S if S is the unique jy,-set containing T. The forcing star

chromatic number sz (S) of S in G is the minimum cardinality of a forcing
subset for S. The forcing star chromatic number fxs (S) of G is the smallest
forcing number of all y,-sets of G.

Example 2.2. For the graph G given in Figure 2.1, S; = {v;, vg, v3} and

Sy = {vg, U3, vy} are the only two y,-sets of G so that y,(G) = 3. It is clear
that £, (S;) =1, £, (Sg) =1 so that £, (G) =1.

, v
o1 3

3

22 g val
Figure 2.1
Observation 2.3. For every connected graph G, 0 < £, (G) < %4(G).

Remark 2.4. The bounds in the Observation 2.3 are sharp. For the
complete graph G = K,,(n > 2), S = V(G) is the unique y,-set of G so that

f,,(G)=0. For the graph G given in Figure 2.2, S = {v;, vy, g},
Sy ={v, vg, v}, Sz ={v,v3, 05}, Sy ={v1,v5, 06}, S5 ={vg, V5, V6
Sg = {vg, U3, v4}, S;=1{vs, v4, 05}, and Sg = {v3, vy, vg} such that
f,,(Si) =3 and x4(G) = 3 for i =1 to 8 so that £, (G) = xs(G) = 3. Also the
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bounds are strict. For the graph G given in Figure 2.1, x4(G) = 3, £, (G) = 1.
Thus 0 < £, (G) < x5(G).

vy 2 2

!.‘3
6

2 ve G oy 1
Figure 2.2
Theorem 2.5. Let G be a connected graph. Then

(@) fy, (G) = 0 if and only if G has a unique y - set.

) f,, (G) =1 if and only if G has at least two y- sets, one of which is a

unique - set containing one of its elements, and

() fxs(G) = xs(G) if and only if no ys-set of G is the unique 7y,-set
containing any of its proper subsets.
Proof. (a) Let f, (G) = 0. Then, by definition, £, (S) =0 for some y,-set

S of G so that the empty set ¢ is the minimum forcing subset for S. Since the
empty set ¢ is a subset of every set, it follows that S is the unique y- set of G.

The converse is clear.
(b) Let £, (G) = 1. Then by Theorem 2.5(a), G has at least two y,-sets.
Also, since f,_ (G) =1, there is a singleton subset T of a y4-set S of G such

that T is not a subset of any other y,-set of G. Thus S is the unique y,-set

containing one of its elements. The converse is clear.
(©) Let f, (G) = xs(G). Then f, (G)=%4(G) for every y,-set S in G.
Also, by Theorem 2.3, 7%4(G) > 2 and hence f, (G)> 2. Then by Theorem

2.5(a), G has at least two y,-sets and so the empty set ¢ is not a forcing
subset for any y,-set of G. Since f, (G) = x4(G), no proper subset of S is a

forcing subset of S. Thus no y,-set of G is the unique y,-set containing any
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of its proper subsets. Conversely, the data implies that G contains more than
one y,-set and no subset of any y,-set S other than S is a forcing subset for

S. Hence it follows that £, (G) = x4(G). .

Definition 2.6. A vertex v of a graph G is said to be a star chromatic
vertex of G if v belongs to every y,-set of G.

Example 2.7. For the graph G given in Figure 2.3, S; = {v;, vy, vs},
Sy ={vy, vz, v}, Sz ={v1, v3, v, Sy ={vg, vz, U5}, S5 = {v3, vy, U5} and
Sg = {v3, vs, vg} are the only y,-sets of G such that vy is a star chromatic

vertex of G.

Figure 2.3

Theorem 2.8. Let G be a connected graph and W be the set of all star
chromatic vertices of G. Then f, (G) < x4(G) —|W|.

Proof. Let S be any y-set of G. Then y,(G)=|S|, W < S and S is the
unique y,-set containing S-W. Thus f, (G)<[S-W|=[S|-|W]|
= XS(G) - | w | .

In the following we determine the forcing star chromatic number of some

standard graphs.
Theorem 2.9. For the complete graph G = K, (n > 2). Then f, (G) = 0.

Proof. Let S = V(G) is the unique y,-sets of G, the result follows from
Theorem 2.5(a). =

Theorem 2.10. For the star graph G = K; ,(n 2 3), £, (G) = 1.

Proof. Let V = {x, v, vg, ..., U,_1} be the vertex set of G where x is the
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central vertex of G. Then S; = {x,v;},( 1 <i<n-1) is the y,-set of G so
that y,(G) = 2. Since x is a star chromatic vertex of G, by Observation 2.8(c),

f,,(G) <2-1=1. Since n > 3, y,-set is not unique. Hence by Observation

2.5 0, f, (G)=1. .
Theorem 2.11. For the double star graph G = Ky , , f, (G) = 3.

Proof. Let V = {x, v, vy, ..., v, } U{y, 4y, us, ..., us} be the vertex set of
G such that xv;, xy, yu; € E(G) for all (1<i<r) and (1<, <s) where
r+s=n-2. Then S ={x,y v} and Sy ={x,y u;jj(1<i<r) and
(1 < j < s) are the only y,-sets of G such that £, (S;)=f, (Sz) =3 so that
£, (G) = 3. .

Theorem 2.12. For the complete bipartite graph G = K, ;1 <r <s),

0 ifr=s=1
1 otherwise.

f,.(G) = {

Proof. If r =s =1, then the result follows from Theorem 2.9. For
r=1s>2 then the result follows from Theorem 2.10. So let
X = {x, x9, ..., x,} and Y = {y;, ¥9, ..., ¥s} be the bipartite sets of G. Then
S; = XU{y}(2<i<s) is a yg-set of G such that f, (S;)=1 for all

<1 < 8) so that =1. L]
(2 <i<s)sothat f; (G)=1
1 if n=4
Theorem 2.13. For the path G = P,(n 2 4), f, (G) =12 if n=5
3 otherwise.
Proof. Let P, be vq, vy, ..., U,,. We consider the following cases.

Case(l)) n=3r,r > 2.

Assign C(v;)=1,i=1,4,...,3r+1,C(v;)=2,j=2,5,...,3r —=1,C(v) = 3,
k=38,6,...,3r. Then S ={v;,vj,vp} is a ys-set of G such
that y(Sjjp) =3 for i, j, k(i=1,4,...,3r-2,j=2,3,...,3r-1, k=3, 6,
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..., 3r) so that y4(G) = 3. By Observation 2.3, 0 < f, (G) < 3. Since y,-set
of G is not unique sz (G) > 1. Tt is easily verified that no singleton subsets or
two element subsets of Sijk for all i, j,k(i=14,...,3r-2
j=1,43r-1,k=3,6,...,3r) is not a forcing subset of Sijk so that
fy,(Sijx) =3. Since this is true for all y,-set Sj for all
i, L, k(i=1,4,...,3r-2,j=2,3,...,3r-1, k=36, ..., 3r), fxs(G) =1.

Case (i) n=3r+1, r >1.

Assign C(v;)=1,i=1,4,...,3r+1,C(v;)=2,j=2,5,...,3r —=1,Clvy) = 3,
k=3,6,..,3r. For r=1,8 ={v,vy,v3} and Sy = {vy, vy, v4} are
the only two y.-sets of G such that y.(S;)=y%:(S9)=1 and
so %(G)=11/1,(G)=1. Let r=>2  Then Sy ={v;,vj, v} and
Sijk = {Vj» U3p41, U} are the only yg-sets of G such that ys(Sjjz)
— %5(Syx) =8 for &, jk(i=1,4,...,3r+1,j=2,8,...,3r -1,k =3,6, .., 3)
so that y4(G) = 3. By Observation 2.3, 0 < f, (G) < 3. Since y,-set of G is
not unique sz (G) > 1. Tt is easily verified that no singleton subsets or two
element subsets of Sijk for all 7, j,k(i=1,4,...,3r+1j=2/5,...,3r -1,
k=3,6,...,3r) is not a forcing subset of S;j;, so that f, (S;jz) = 3. Similarly
no singleton subsets or two element subsets of S;;, for all
i, k(i=1,4,...,3r+1, k=3, 6, ..., 3r) is not a forcing subset of S;;, so that
f,(Sir) = 3. Since this is true for all y,-sets S;; and Sy for all
i j k(i=14,..,8+1,j=238 ..,3-1k=36,.,3)f,(G) =3

Case (i) n=3r+2, r 2 1.

Assign C(v;)=1,i=14,...,3r+1,C(vj)=2,j=2,5,...,3r +2,C(v;,) = 3,
k=3,6,...,3r. For r=1,8; ={v;,v9,03}, Sy ={v1,v3,05} and Sg ={vy, vs,v4},
Sy =1vg,vg, 5} are the yg-sets of G such that f, (G) = 2. Let r > 2. Then

Sijr =1{vi, v, U b Sipe = {vi, Usr415 Uk} Sij = {vi5 V), Ugrsahs S = {U5, Uri1, Usria)
are the only y-sets of G such that x(S;jjr) = xs(Sjjr) = xs(Siz) = x5(Sjj) =3
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for all i, j,k(i=1,4,...,3r+1,j=2,5,...,3r+2,k=3,6,...,3r) so that
%s(G) = 3. By Observation 2.3, 0<f, (G)<3. Since y,-set of G is not
unique sz (G) <1. Tt is easily verified that no singleton subsets or two
element subsets of Sijk for all i, j,k(i=14,..,3r+1,j=25,...,
3r+2,k=3,6,...,3r) is not a forcing subset of S;;, so that f, (Sj)=3.
Similarly no singleton subsets or two element subsets of S;, for all
i, k(i=1,4,...,3r+1, k=36, ..., 3r) is not a forcing subset of S;;, so that
fxs(Sijk) = 3. Similarly no singleton or two element subsets of S;; for all
i, (i=1,4,...,3r+1,j=2,5,...,3r +2) is not a forcing subset of Sij S0
that f,_ (S;j) = 8. Similarly no singleton subsets or two element subsets of S;
for all i(i =1, 4, ..., 3r +1) is not a forcing subset of S; so that £, (S;) = 3.

Since this is true for all ys-sets S, S, S5, S; for  all

(i=14,...,3r+1,j=2,38,...,3r+2,k=3,6, ..., 3r), fxs(G) = 3. "
0 ifn=4
Theorem 2.14. For the cycle G = C(n 2 4), f, (G) =12 if n=5
3 if n>6.

Proof. The proof is similar to that of Theorem 2.13. "

Theorem 2.15. Let G be a connected graph of order n > 2 with

AG) =n-1. Let v be a universal vertex of G. Then v is a star chromatic
vertex of G.

Proof. On the contrary, suppose that v is not a star chromatic vertex of
G. Then there exists a y,-set S of G such that v ¢ S. It follows that there

exists at least one vertex, say x € S such that vx ¢ E(G). Hence it follows

that v is not a universal vertex of GG, which is a contradiction. Therefore v is a

star chromatic vertex of G. n

Theorem 2.16. Let G be a connected graph of order n =2 with
AG) = n—1. Then f, (G) = 0.

Proof. Let v be a vertex of G such that deg(v) = n —1. Since any induced

paths P, is not bicolor able, assign each vertex of G with distinct colours.
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Hence it follows that S = V(G) is the unique jy4-set of G. Therefore
sz (G)=o0. L]

Corollary 2.17. Let G = Ky + B,_1(n 2 4), £, (G) = 0.
Corollary 2.18. Let G = K; + C,_1(n > 4), f, (G) = 0.

Theorem 2.19. For every positive integers a > 3, there exists a connected
graph G such that 14(G) = £, (G) = a.

Proof. Let P, :uy : 9, ..., 4jg(1 <i<a) be a copy of path on a
vertices. Let G be the graph obtained from P.,(1 <i < a) by joining the edges
u;; with wu;, where |j—k|> 2 for all (1 <i < a) and join u;; with wy, for
all 1 <4, j, k, r<a,j=#r). The graph G is shown in Figure 2.4.

First we prove that y4(G) = a. Since u;; is adjacent to u;; for 1 <i <a
and 1< j <a, assign c(u;)=1. Since u;y is adjacent to u;; for 1<i<a
and 1<j<a, assign c(yy)=2. Similarly u;, is adjacent to u;; for
1<i<a and 1< j<a, assign c(u;,) = a. Since no path with four vertex is

bicolourable, 4(G) = a.

Next we prove that f, (G) = a. Tt is easily seen that any y,-set of G is of
the form S; = {1, 49, ..., 4;q} for 1 <i < a. On the contrary suppose that
fxs (G) < a. Then there exists a y,-set say S; with a proper subset T of S;
such that |T'| < a. Then there exists x € S; such that x ¢ 7. Without loss
of generality, let x = u;;. Let S} = S; U {uy1} U {ug}. Then S} is a y,-set of
G with T' ¢ S; which is a contradiction. Therefore £, (G) = a. .

=
uy Uz Uyt Ue-1
1 2 3 a—1 a

Figure 2.4
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